CIRCULATION COPY

SUBJECT TO RECALL
IN TWO WEEKS

UCRL- 82963
PREPRINT

A DATA BASE MANAGEMENT SYSTEM
FOR THE MFTF

JOSEPH H. CHOY
JOHN A. WADE

This pager was prepared for submittal to the
8th SYMPOSIUM ON ENGINEERING PROBLEMS OF

FUSION RESEARCH; IEEE; SHERATON HOTEL,
SAN FRANCISCO, CA., NOVEMBER 13-16, 1979

11-12-79

This is a preprint of a paper intended for publication in a journal or proceedings. Since
* changes may be made before publication, this preprint is made available with the un-
derstanding that it will not be cited or reproduced without the permission of the author.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

w

A DATA BASE- MANAGEMENT SYSTEM FOR THE MFTF*

Joseph H. Choy and John A. Wade
Lawrence Livermore Laboratory, University of California
Livermore, California 94550

Summary

The data base management system (DBMS) for the
Mirror Fusion Test Facility (MFTF) is described as
relational in nature and distributed across the
nine computers of the supervisory control and
diagnostics system. This paper deals with a
reentrant runtime package of routines that are used
to access data items, the data structures to
support the runtime package, and some of the
utilities in support of the DBMS.

Introduction

The supervisory control and diagnostics system
(S€DS) for MFTF is a distributed system of nine
computers that are connected by a bank of shared
memory in a star configuration (see Fig. 1). The
workload is divided among the computers by function,
which reduces the amount of computer-computer
interactions. Each computer's logical functions
are backed up by one of the other computers in the
SCDS. A1l communication between tasks on different
computers is through the shared memory. (For a
further description of the distributed SCDS, see
McGoldrick in these proceedings.?)

Fig. 1.

MFTF Control and Diagnostics System

An MFTF shot will produce several megabytes of
diagnostic data that must be recorded and analyzed
at a shot rate of one every five minutes. In
addition, about thirty kilobytes of mostly scalar
element and a few small vectors control the MFTF.
On the other hand, diagnostic data are comprised
chiefly of several large vectors. The DBMS must be
able to handle both scalars and large vectors
efficiently and quickly.

*Work performed under the auspices of the U.S.
Department of Energy by the Lawrence Livermore
Laboratory under contract number W-7405-ENG-48.

-1-

The DBMS is relational in nature: i.e., it is
fundamentally a set of tables. The user retrieves
data from a table by specifying the row-and-column
location of the desired data. The DBMS also
permits the user to search tables for specified
conditions and to operate upon selected rows.

a further description of relational_data base
management systems, see Chamberlain! and Kim.3)

(For

Program Level Interface

The DBMS permits a user to access the data
base through his program via the Program Level
Interface (PLI) or through an interactive terminal
via the Query Level Interface (QLI), which is built
using the PLI facilities. The PLI consists of two
parts: a precompiler and a reentrant runtime
library (see Fig. 2). (For details of the PLI user
interface, see Wade and Choy in these
proceedings.”)

USING THE PLI INTERFACE "]

EH=H=

D

-tone Contar
[

- =]

Sompiter

| S

Fig. 2.

Using the PLI Interface

The Precompiler

The precompiler accepts as input a Pascal?
source program that contains data base declarations
and references. A dot notation used for data-base
references is similar to Pascal's record data
structure reference.” The main objective of the
precompiler is to eliminate as much processing as
possible, and thus, minimize the runtime to access
data. The precompiler parses the source program,
analyzes the data-base declarations and access
statements, and transforms the access statements to
the appropriate runtime function and procedure
references. During the data-base transformations,
the location of data items being referenced is
resolved as offsets from given points in a table.
Since the physical location of a data item is
partially resolved prior to runtime, the DBMS is
not totally independent of the storage structure
characteristics of a given table. A change in the
structure of a table usually requires the programs
referencing that table to be run through the
precompiler, compiler, and load sequence depicted
in Fig. 2. The resultant output of the precompiler
is a Pascal source program with DBMS runtime
function and procedure calls that is then passed on
to the Pascal compiler.

The compiler generates a relocatable object
code that is then loaded and externals are
resolved. DBMS externals are resolved against the
DBMS reentrant runtime library.

A Distributed DBMS

Each table in the DBMS is kept on one of the
nine computers in the network. In essence, only
one original copy of a table--not several copies--
are referenced on different computers. A backup
copy may be kept if loss of the original would be
consequential. A user's program can make reference
to a DBMS table any of the computers in the
network. Fig. 3 shows how a user's task can access
a table that is located on the same or a different
computer.

DATA BASE ACCESS PATHS FOR A PHYSICAL COMPUTER -}
Network communications
3 Data bese | Return status
access request of data base
from another aceess and loca-
physi tor tion of dats
Returned status
of data base
acCess request on
another i
Data base DBMS
Task access requast task -
to m
[Buffer i Buffer
Program-level interface
Shared or Private, shared,
global tables or global tables
Shared Locat
mamory mamory
Fig. 3. Data Base Access Paths

for a Physical Computer

The files containing a table are stored on the
disks of and "belong" to a specific computer. A
table opened by a user is either brought entirely
into memory or paged in portions on a demand
basis. Whether a table is memory-contained or
paged depends on the data-base usage pattern
(frequency of references, speed of response
required for the table, and complexity of data base
searches) and size of the table.

When a table is brought into memory, it can be
placed into the memory of the local computer or
into the memory shared by all nine computers. It
is desirable to place into shared memory those
tables that are accessed frequently by more than
one computer. It is also preferable to place
only memory-contained tables into shared memory
because of the difficulty and overhead requirements
of paging data into shared memory. Paging a table
into shared memory is an available option; it is
controlled by the computer that "owns" the files of
the table being accessed. Semaphores and their
associated P and V operators are used to control
access to the paging data structures in shared
memory.

As shown in Fig. 3, a task--through the use of
the PLI--can access tables in the local memory of
the computer it is running on, or tables in the
shared memory. If the requested table is owned by
another computer and is not contained in shared
memory, a data-base access request is commun icated
through the network to the DBMS task on the
computer owning the files of the desired table.

The DBMS task processes the request, places the
desired data in shared memory, and notifies the
requesting task of the data's location.

-2-

The choice of storage structures for the
tables depends on the internal characteristics of
the data (such as the size of the table and the
distribution of values) and on data-base usage
patterns (frequency of references and complexity of
searches).

PLI Software

The reentrant runtime library is written in
Pascal and contains routines that permit a user to
create, delete, open, close, read, and write a DBMS
table. In addition, routines are available to
lock, unlock, and checkpoint a data base. A
hierazchica] view of the 1/0 package is given in
Fig. 4.

HIERARCHICAL VIEW OF PLI 1/O ROUTINES n
High-Jevel Table _I
I P' o '
vo
Dascription
Poger of paged spece

——
——
| —

Logical-to-

o physicel

address map -

Fig. 4. Hierarchical View of PLI I/0 Routines
The high-level I/0 routines check for the
storage structure and logical address of the table

and validate other parameters that describe the
table. The high-level routines resolve to a
logical byte address offset the location of the
data being referenced. A1l I/0 is made through the
DBMS pager, using logical addresses. If the
desired logical address needs to be read or
written, the pager calls the appropriate logical
1/0 routine, which transforms the logical address
to a physical file and address. Finally, the
physical I/0 routines are called to perform the
actual I/0 to the paged space from the disks, or
vice versa. Once the data are in the paged space,
the high-Tevel 1/0 routines move the data to or
from the user's data space. References to a table
that require network communications are intercepted
by the high-level 1/0 routines, which route the
request to the appropriate computer and then wait
for the data to be placed in the shared-memory page
space. At this point, the requested data are moved
to/from the user's data space.

If the task includes reference to data from a
previous shot, the table name is qualified with a
shot identifier. The current shot is always the
default. If the request for historic data is not
on the disk, the high-level I/0 routines request
the computer operator to mount the appropriate
magnetic tape(s) and reads the data onto disk.

PLI Data Structures

The data structures to support the PLI exist
in shared memory or local memory of a computer,
depending on the function and use of the structure.

A list of the "tables currently open" by some
task in the SCDS is kept in shared memory. The
purpose of this list is to ensure that a table is
opened only once. The 1ist also decreases the time
to process an open if the table is currently open
for another task, since the runtime entry
(described below) need not be constructed. For
each table name in the Tist, there is a pointer to
the runtime entry that describes the table's
attributes and a count of the number of tasks that
currently have the table open.

When a task requests the DBMS to delete a
table, the table's definition is flagged as
deleted, and the name of the table is placed on a
1ist of "tables to be deleted,” which is painted to
from shared memory. This gives the task a faster
response for delete operations that can be
time-consuming in returning data file space and
removing the table definition from the index. The
creation of temporary tables that are frequently
used is also faster because the create function
checks to see if the table being created exists but
is only marked as deleted.

There are separate paging mechanisms for the
local memory of each of the computers. Each local
memory contains the data structures to describe the
page space and its associated "Tast recently used”
queue. Shared memory has one set of the data
structures that describe the shared-memory page
space and one "last recently used” queue. Access
to the shared-memory data structures for paging is
controlled by semaphores in shared memory. The
semaphores are implemented with the aid of an
indivisible hardware test-and-set instruction.

Whenever a table is open, there exists in
shared memory a runtime entry that is pointed to
from the list of "tables currently open" (described
above). This runtime entry is a subset of the
complete definition of a table. This subset
describes only those few parameters needed during
the runtime. In addition, the runtime entry points
to a list of task names that have this table open
and collects usage statistics for the table.

As mentioned above, a table exists in only one
place and belongs to a specific computer. Each
computer has in its Tocal memory an index to the
tables for which it has the files (see Fig. 5). A
simple hash table is used to locate a table
definition, with collisions handied with a linked
1list. When a task opens a table, the list of
"tables currently open® is checked first. If the
table is found to be already open, the pointer to
the runtime entry is followed and the task's name
added to the 1list of tasks associated with the open
table.

INDEX TO TABLE DEFINITIONS ON A COMPUTER (]

Hush
able
1

Hash
:
name

Linked list of
tabie definitions

Fig. 5. Index to Table Definitions on a Computer

If the table is not open, the local index to table
definitions is checked. If the table is local, a
runtime entry is built from the table definition,
and the table name is added to the list of tables
open. If the table is not local, the Data Base
Manager computer js interrogated for the location
of the table, and the appropriate computer is
requested to open the table.

The table definitions mentioned above are
essentially static and can only be modified by the
Data Base Administrator. A table definition
contains information about the table's storage
structure, creation date and time, the table's
logical address, whether it is memory-contained or
paged, in shared memory or local memory, the number
of columns to the table, the data type and size of
each column, and a list of tasks permitted access
to the table, along with the type of access allowed.

For those tables whose information is critical
and must not be lost, a duplicate copy is kept on a
different physical computer. When an update is
made to the original, the same update is queued to
the DBMS task of the computer where the copy
exists. If a computer with a table that has a
duplicate copy becomes non functional and the SCDS
can continue to operate in a degraded mode, the
backup copy is made the primary copy and another
backup copy is made elsewhere on another computer.

Utilities

Typical utilities create tables (table
definition initialized and space allocated) and
delete tables on the list of "tables to be
deleted." Other routines gather and print usage
statistics and check the pointers and integrity of
the allocated space. There are also utilities to
copy tables to magnetic tape for offline storage
and to retrieve the tables from tape when users
need to reference historic data. Because of the
volume of diagnostic data to be collected with the
time constraints of one shot, specialized routines
designed with speed in mind format the raw
diagnostic data into the DBMS table structure.

The ability of the SCDS to function without a
computer in a possibly degraded mode requires that
the DBMS have utilities to reconfigure the location
of tables from one computer to another, make copies
of a table on another computer, and modify the
table definition to reflect the changes made.

Conclusions

The MFTF DBMS is designed to be fast, easy to
use, and to handle a distributed data base. It
handles simple scalar set-point values as well as
several megabytes of vector-oriented diagnostic
data quickly. The DBMS utilizes a reentrant
runtime library to eliminate several copies of the
sane DBMS routine in memory.

References

1. Chamberlain, D. D. "Relational Data Base
Management Systems," Computing
Surveys 8, 1 (March, 1976), 43-66.

2. Jensen, K. and Wirth N. PASCAL: User Manual
and Report, Springer-Verlag,
New York, 1975.

3. Kim, W. "Relational Database Systems,"
Computer Surveys 11, 3
(September, 1979), 185-211,

g

4, McGoldrick, P. R. "SCDS Distributed S_ystem!"
Proceedings of the Eighth Symposium on Engineering
Problems of Fusion Research {IEEE), 1979.

5. Wade, J. A. and Choy, J. H. "“Control and
Diagnostic Data Structures for

the MFTF," Proceedings Engineering Problems of
Fusion Research (IEEE?, 1979.

NOTICE

This report was prepared as an of work sp d by the United
States Government. Neither the United States nor the United States
Department of Energy, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness or usefulness of any information, apparatus,
product or p disclosed, or rep that its use would not infringe
privately-owned rights.

Refe

to a pany or prod name does not imply approval or
recommendation of the product by the University of California or the U.S.
Department of Energy to the exclusion of others that may be suitable.

-4-

